5 research outputs found

    Audio-based Roughness Sensing and Tactile Feedback for Haptic Perception in Telepresence

    Full text link
    Haptic perception is highly important for immersive teleoperation of robots, especially for accomplishing manipulation tasks. We propose a low-cost haptic sensing and rendering system, which is capable of detecting and displaying surface roughness. As the robot fingertip moves across a surface of interest, two microphones capture sound coupled directly through the fingertip and through the air, respectively. A learning-based detector system analyzes the data in real time and gives roughness estimates with both high temporal resolution and low latency. Finally, an audio-based vibrational actuator displays the result to the human operator. We demonstrate the effectiveness of our system through lab experiments and our winning entry in the ANA Avatar XPRIZE competition finals, where briefly trained judges solved a roughness-based selection task even without additional vision feedback. We publish our dataset used for training and evaluation together with our trained models to enable reproducibility of results.Comment: IEEE International Conference on Systems, Man, and Cybernetics (SMC), Honolulu, Hawaii, USA, October 202

    Robust Immersive Telepresence and Mobile Telemanipulation: NimbRo wins ANA Avatar XPRIZE Finals

    Full text link
    Robotic avatar systems promise to bridge distances and reduce the need for travel. We present the updated NimbRo avatar system, winner of the $5M grand prize at the international ANA Avatar XPRIZE competition, which required participants to build intuitive and immersive robotic telepresence systems that could be operated by briefly trained operators. We describe key improvements for the finals, compared to the system used in the semifinals: To operate without a power- and communications tether, we integrated a battery and a robust redundant wireless communication system. Video and audio data are compressed using low-latency HEVC and Opus codecs. We propose a new locomotion control device with tunable resistance force. To increase flexibility, the robot's upper-body height can be adjusted by the operator. We describe essential monitoring and robustness tools which enabled the success at the competition. Finally, we analyze our performance at the competition finals and discuss lessons learned.Comment: M. Schwarz and C. Lenz contributed equall

    FaDIV-Syn: Fast Depth-Independent View Synthesis

    Full text link
    We introduce FaDIV-Syn, a fast depth-independent method for novel view synthesis. Related methods are often limited by their depth estimation stage, where incorrect depth predictions can lead to large projection errors. To avoid this issue, we efficiently warp input images into the target frame for a range of assumed depth planes. The resulting plane sweep volume (PSV) is directly fed into our network, which first estimates soft PSV masks in a self-supervised manner, and then directly produces the novel output view. We therefore side-step explicit depth estimation. This improves efficiency and performance on transparent, reflective, thin, and feature-less scene parts. FaDIV-Syn can perform both interpolation and extrapolation tasks and outperforms state-of-the-art extrapolation methods on the large-scale RealEstate10k dataset. In contrast to comparable methods, it achieves real-time performance due to its lightweight architecture. We thoroughly evaluate ablations, such as removing the Soft-Masking network, training from fewer examples as well as generalization to higher resolutions and stronger depth discretization
    corecore